Indecomposable Quasi-Characteristics Scheme on Pyramidal Stencil and Its Application for Numerical Simulation of Two-phase Flows Through Heterogeneous Porous Medium
نویسندگان
چکیده
A new high-resolution indecomposable quasi-characteristics scheme with monotone properties based on pyramidal stencil is considered. This scheme is based on consideration of two high-resolution numerical schemes approximated governing equations on the pyramidal stencil with different kinds of dispersion terms approximation. Two numerical solutions obtained by these schemes are analyzed, and the final solution is chosen according to the special criterion to provide the monotone properties in regions where discontinuities of solutions could arise. This technique allows to construct the high-order monotone solutions and keeps both the monotone properties and the high-order approximation in regions with discontinuities of solutions. The selection criterion has a local character suitable for parallel computation. Application of the proposed technique to the solution of the time-dependent 2D two-phase flows through the porous media with the essentially heterogeneous properties is considered, and some numerical results are presented. c © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 44–55, 2002
منابع مشابه
A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملMHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method
In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...
متن کاملNumerical Simulation and Estimation of the Transvers Macrodispersivity Coefficient of Aqueous Phase (Miscible) Contaminants of Salt Water in a Heterogeneous and Homogeneous Porous Media
Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two flu...
متن کاملNumerical Evaluation of Hydraulic Fracturing Pressure in a Two-Phase Porous Medium
Hydraulic fracturing is a phenomenon in which cracks propagate through the porous medium due to high pore fluid pressure. Hydraulic fracturing appears in different engineering disciplines either as a destructive phenomenon or as a useful technique. Modeling of this phenomenon in isothermal condition requires analysis of soil deformation, crack and pore fluid pressure interactions. In this paper...
متن کاملSmall-stencil 3D schemes for diffusive flows in porous media
In this paper, we study some discretization schemes for diffusing flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall in this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes, show the efficiency of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001